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Modelling of transverse crack growth 
and saturation in cross-ply laminates 
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Renault Automobiles, 67  Rue des Bons Raisins, 92508 Rueil Malmaison Cedex, France 

L. A N Q U E Z  
A vions Marcel Dassault, 92214 Saint-Cloud Cedex, France 

A model of transverse Cracking in cross-ply laminates is presented. The model describes the onset 
of cracking, the development of the number of cracks, the saturation phase of this damage mode 
and the final crack distribution, as well as the dependency of these phenomena on the 90 ~ ply 
thickness. This analysis is based on an effective flaw size distribution and a non-linear interlaminar 
behaviour hypothesis. The theoretical prediction of the process and the saturation of cracking was 
well correlated with the experiments conducted on [O2/90n]s graphite/epoxy. However, there 
was considerable dispersion in the experimental results concerning the onset of cracking. 
Experimental work and part of the theoretical investigations were made at ONERA, 29 av. 
Division, Leclerc 92322, Chatillan, Cedex, France. 

1. Choice of hypotheses 
In the damage of composite materials under tensile 
loading, five modes of failure have been identified 
(Fig. 1): (1) transverse cracking, (2) delamination, (3) 
splitting, (4) fibre failure, and (5) fibre-matrix debon- 
ding. In the case of cross-ply laminates under uniaxial 
tensile loading, the first damage to appear in usual 
engineering composites is transverse cracking. Even if 
this phenomenon has a small influence on the global 
axial stiffness, it causes substantial reduction of com- 
pression and shear strengths [ l] ,  and it can be the 
cause of delamination in an unloading-reloading case 
[2, 3]. 

We propose here a simple model of transverse 
cracking from onset to the saturation phase which 
takes into account the "volume effect", i.e. the influ- 
ence of the 90 ~ layer thickness in the case of [ 0 2 / 9 0 n ] s  

laminates. 
Two hypotheses are necessary to allow us to de- 

scribe this damage process: (1) a crack propagation 
criterion; (2) an interracial behaviour hypothesis in 
the stress concentration area around the crack tip. 

1.1. Crack propagation criterion 
A common hypothesis is to assume the existence of 
microscopic flaws in the 90 ~ layer (voids, microcracks 
due to residual thermal stresses, local heterogeneities 
due to an excess of fibres, etc.). The importance of each 
flaw is assumed to be quantified by a parameter a, 
which could be the size of an equivalent (same propa- 
gation characteristics) microcrack subjected to per- 
pendicular loading and propagating in Mode I. The 
conditions for the validity of a Mode I fracture ap- 
proach were given by Griffith [4] and are applicable 
here. To do this, one can use a classical fracture 
mechanics approach by using a criterion of propaga- 

tion based on a critical value Gc of G, the energy 
release rate [5], or also on an equivalent critical value 
K~c of K~, the stress intensity factor, where 
KI = 090(Tta) 1/2. 

Therefore, relate any flaw of size a can be related to 
a critical value of stress at which the crack propagates 
by O9o = Klc/(rca) 1/2. This equation relates a given 
statistical distribution of defect size to a given statist- 
ical distribution of crack propagation stresses, f(O9o ). 
Considering that failure of a chain occurs when its 
weakest link fails, and if we assume a statistical distri- 
bution of failure stresses f(o),  it can easily be shown, 
using the density function of the minimum of indepen- 
dent random variables, that the probability for a link 
of volume d V, to fail during loading from 0 to o is [6]: 

e (o )  = 1 - e x p [ - f ( o ) d V ]  (1) 

The choice o f f (o )  is a matter of discussion. The most 
commonly used function is a two parameter Weibull 
distribution f (o)  = (o/e0)  a [6-8] ,  or a normal distri- 
bution [5]. However, it has been shown that these 
functions are not satisfactory in some circumstances 
[6]. For  each material we must choose a function 
which can take into account fibre, matrix, and inter- 
face properties as well as the manufacturing 
process. Here, a three-parameter Weibull function 
f (o )  = [(o - o,)/c%]" and a two-parameter Gumbell 
function f (o )  = exp[  - [3(o - ou)] are used. Both 
have given satisfactory results even if the Weibull 
function seems easier to use for the experimental de- 
termination of the parameters and appears to be more 
flexible (by having three parameters instead of two). 

1.2. Interfacial  b e h a v i o u r  h y p o t h e s i s  
The hypotheses proposed for modelling the stress dis- 
tribution around cracks are widely inspired by the 
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Figure 1 (a) Nomenclature and axes of reference. (b) Modes of failure of a cross-ply laminate. 1, Transverse cracking; 2, delamination; 
3, splitting; 4, fibre failure; 5, fibre-matrix debonding. 
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Figure 2 Analogy between a unidirectional composite and a laminated composite. 



work of Aveston et al. [9, 10] on composites made of 
a brittle matrix reinforced by unidirectional fibres. 

One can apply these hypotheses to cross-ply lam- 
inates by considering each ply as a homogeneous 
equivalent material [11]. This analogy can be repres- 
ented by Fig. 2. 

The first approach of Aveston et al. [9] was to 
consider the matrix and the fibre in the neighbour- 
hood of a crack as unbonded. The word unbonded 
means there is no connection between elastic dis- 
placements of fibre and matrix, and both interracial 
debonding and lamina sliding will occur when an 
upper shear stress limit is reached. 

In their second approach [I0], the matrix remains 
bonded and its behaviour is fully elastic. This is an 
extension of Cox's elastic shear lag analysis [12]. It 
has been applied to cross-ply laminates by Garret and 
Bailey [13], Parvizi et at. [14] and Manders et al. [6]. 
Peters [7], and Chou and Peters [8] have also used 
a similar approach with the additional assumption 
that a limited interracial area exists and supports all 
the shear stress. However, the saturation process and 
the volume effect remain both difficult to describe 
because of the complexity of the axial stress distribu- 
tion [7]. 

Aveston and Kelly [10] have found two main limits 
in their first approach: (I) the physical justification of 
the interracial sliding hypothesis (at constant shear 
stress re), and (2) the problem of non-aligned fibres. 
The second limit does not apply in the case of 

Figure 3 Interracial sliding at the interface around the crack tip. 

Figure 4 Fibre-matrix debonding near the crack tip (ONERA pic- 
ture). 
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laminates because they consist of macroscopic layers 
instead of microscopic fibres. Therefore, the parallel- 
ism can be assumed as perfect. The first approach, has 
been successfully used in unidirectional ceramic com- 
posites and in steel-reinforced epoxy composites [15], 
where the diameter of the fibre is not small and the 
fibre volume fraction is not high. However, the inter- 
facial behaviour of laminates is much more complex. 
Figs 3 and 4 are microscopic pictures taken after the 
surface was treated with an opaque substance. Fig. 3 
shows an area of interfacial sliding which may be due 
to local delamination as well as plastic behaviour of 
the matrix as the interface. Fig. 4 shows local plasti- 
city and fibre-matrix debonding near the crack tip. 
Such debonding has been clearly observed by Bailey 
and Parvizi [16] for glass-epoxy laminates. Because 
the interfacial strength is lower for graphite-epoxy, 
debonding does probably play an important role in 
the 90 ~ layer. 

The major assumption of this paper is to use the 
interfacial sliding hypothesis at constant shear stress, 
xc, to model these three energy dissipation phenomena 
(sliding, debonding and plasticity), 

2. Stress analysis 
2.1. The 90 ~ ply 
To assess the stress distribution around the crack with 
the assumption of interracial sliding, a finite difference 
numerical analysis was conducted. The finite differ- 
ence technique is easier to use to break links between 
nodes at the interface when z~ = z~ is reached. This 
numerical simulation describes the progression of 
interracial sliding as well as the distribution of shear 
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Figure 5 "~.:(z) near the crack in the 90 ~ layer. 
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Figure 6 x~z(x) in the 90 ~ layer. 



stress in the 90 ~ ply. These results are shown in Figs 5 
and 6. The shapes of these curves are a consequence of 
the sliding hypothesis. The r~z distribution along the 
x-axis clearly shows the existence of two distinct 
zones: (1) a non-perturbed area where the condition 
of static equilibrium gives crx = cro~ and r ~  = 0; (2) a 
perturbed area around the crack. It's length is denoted 
2t(~o). 

To assess ~ and 1(~o), where cy~ denotes the value 
of axial stress in the 90 ~ layer far from the crack, one 
can use a plane strain analysis and assume that the 
state of stress does not depend on y and also that 
% = constant and 7~y = Yyz = O. For  an orthotropic 
material, these assumptions lead to rxy = ~cy~ = 0. 
Then, the equilibrium equations become 

8~/~x  + ~'c~/~z = 0 (2a) 

and 
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Figure 9 ~x(x) a round  a crack in the the 0 ~ layer, 

tion of stiffness in the 90 ~ layer is supported by the 0 ~ 
layer, but the large difference of Young's modulus 
between the two layers is the reason why, in [02/902]~ 
laminates, Acy~/cy~ is only 0.2%. 

~'~xz/~X + ~cy~/~z = 0 (2b) 

In the damaged zone, we have &Cx~/~x = 2%/e9o (see 
Fig. 5). Hence OC~x/OX = - 2%/e9o and then 

~ - 2%x/e9o for x e [0 ,1(~o)]  (see Fig. 7). 

(3) 

The boundary condition ~ = cy~ at the limit of the 
damaged area leads to 

l ( ~ )  = cy~ego/(2~r (4) 

The equation of the free surface of the crack comes 
from ,&~ = ~u/Oz + ~w/~x and if we neglect aw/Ox, we 
have 

~u/~z 

u(x, z) = 

(see Fig. 8). 

~-- ]txz 

=- T, xz /G23 

2 % z / ( G 2 3 e 9 o )  

~z2/(Gz3e9o) + u(x, O) (5) 

2.2. T h e  0 ~ ply 
In a similar manner, we obtain the distribution of 
stresses in the 0 ~ plies as shown in Fig. 9. The reduc- 

cY~3(x~ 
2 / (~| 

O~o 
i ! 
t i 

x 

Figure 7 crx(x) around  a crack. 
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Figure 8 Free surface of the crack and sliding area. 

3. Mul t i -cracking process 
3.1. Axial stress distribution during the 

loading 
From the previous stress analysis, we can deduce Ox(X) 
in the 90 ~ ply if we know the location of the cracks 
(Fig. 10). When the load cr~ is increased by dcr~o, the 
stress distribution around the crack is not modified 
because the slope of crx in this area (i.e. 2~c/e9o) is 
independent of the loading (Fig. 10). The damaged 
area of length 2l (~o)  around the crack can therefore 
be considered as inactive because, as the stress croo 
increases, the local stress intensity factor remains con- 
stant and smaller than Kc, otherwise another crack 
would have already propagated. The new cracks will 
appear  only in the active area. The length of this area 
as a function of cy~ will be assessed in section 3.2. 

3.2. Active fissurable length 
To assess the development of cracks, we need to be 
precise concerning the statistics of very critical failure 
stresses. 

Let ~ be the set of all the uniaxial tensile loading 
experiments on originally undamaged material; one 
specific experiment of the set s is denoted by o. 

Let X(o): s ~ R +, be the random variable which 
relates a specific experiment o to the value of stress 
cy = X(o) at which the first crack propagates in the 
composite sample. As mentioned earlier, according to 
the principle of the weakest link in a chain, the distri- 
bution function of X(o)  for a statistical repartition of 
failure stresses f(cy) is [63 

P(o)  = PEX(o) < o ]  = 1 - e x p [ -  ~f(cr)dV] 

(6) 

In the case of a three-parameter Weibull distribution, 
we obtain 

P(cr) = 1 - e x p ( -  ~[ (~  - c%)/Cro)adV] 

for cr _> cr. (7a) 

P(cr) = 0 for cr < ~u (7b) 

The probabili ty of crack propagat ion between 
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Figure 10 Variation of the axial stress distribution during the loading. 
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Figure 11 The crack in link L._ ~ reduces the active length of the 
link L. while the crack in the link L.+~ does not. 

o. and o. + do. is obtained by the density of the law 

p(o. )do.  = P ' (o . )do .  = - ] ' E ( o o . - o . u ) / C y o l ]  a - I  

(a/o.o)dVexp [ - ~ [ (o .  - % ) / o . o ] a d V ] d o .  (8) 

As mentioned earlier, when the number of cracks 
increases, the integration area, i.e. the "active fissur- 
able length" (a.f.1.), decreases. Let us divide the com- 
posite bar into links of length 2l(o.) I. If P(o.) 
becomes the probability for a such link to fail before o., 
we can show by a statistical analysis that the average 
active length on the link is reduced by a factor 
~[P(o.)] because of the perturbation of the neighbour- 
ing cracks (Fig. 11) and we have 

where 

~(P) = 

(a.f.l.) = =[P(cr)]21(o.) 

{(1 - P)(1 - P/4) + (P/4)[p2(7/8 

- (ln2)/2) + P( ln2 - 3/2) + 1]} 

3.3.  Crack  g r o w t h  as a f u n c t i o n  of o 
Applying Equation 8 to the case of a simple link 
instead of the whole bar, we have the differential 
equation 

p(cy) = P'(O.) = [(o. - o.u) /o.o]  " - I  cx (P )ao  

(evo/xc)exp{ -- [(o. -- o.,)/o-o]"c~(P)o-e90/%} (11) 

This equation provides an explicit expression 

P,+I  - P.  = [(nAcy -- o.u)/o.o]"-le(P,)anAo. 2 

(e90/%)exp { - [(nAo. - o.,)/o.o]"cx(P,)nAo.e90/%} 
(12) 

Knowing P(o.), we can obtain 

N(o.) = P(o.)L/[21(~)] (13) 

where N(o.) is the number of cracks at a given stress, o.. 
The results are shown in Fig. 12 for different values of 
%o. From the curve we can deduce the following 
significant results: (i) the value of o. for the first crack 
(solution of N(o.) = 1); (ii) the number of cracks at 
saturation (maximum of N(o.)); (iii) the stress cy~,t at 
saturation (~ > o-~t :* N(o.) = constant). 

4. Correlation with experiments 
(9) Experiments have been conducted on graphite-epoxy 

[02/90,]s laminates with n = 1, 2, 4. The results of 
experiments for n = 2 have been used to determine the 
three Weibull and two Gumbel parameters. The 

(10) cracks were recorded by acoustic emission. Each corn- 
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Figure 12 The theoretical number of cracks during the loading 
experiment. (~)  n = 2, (O) n = 4. 
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Figure 13 Comparison between (x )  experimental and (~5, , )  the- 
oretical crack propagation. (~)  Weibull parameter, ( , )  Gumbel 
parameter. 



posite specimen was examined at least once during 
loading (by X-rays) to check the validity of the acous- 
tic emission recordings and to determine the crack 
spacing. Excellent correlation was found. 

The next step lay in the application of the results of 
our analysis for n = 1, 2 and 4 to predict the onset of 
cracking, the crack growth, and the saturation phase. 
It can be seen that the shapes of the growth curves fit 
satisfactorily (Fig. 13). The most satisfactory result is 
the prediction of the number and the spatial reparti- 
tion of cracks at saturation - the crack spacing density 
appears to be inversely proportional to the ply thick- 
ness (Table I). For n = 4, the results have been ex- 
trapolated because some areas were not saturated at 
0 ~ ply failure. 

Experimental determination of saturation is diffi- 
cult and can only be approximate (Table lI). It can 
be said however, that the saturation stress decreases 
when the ply thickness increases. 

The most difficult result to analyse is the onset of 
cracking, because the dispersion of the experimental 
results does not allow one to draw any conclusion 
about the ply thickness effect. The model shows 
a slight dependence of this effect on the onset of 
cracking (Table III). (The first crack is said to prop- 
agate when a probability of 1/2 is met). Wang and 
Crossman [2], and Parvizi et at. [14] found the ply 
thickness to have a strong effect for very thin plies but 
almost none above a reasonable thickness of the trans- 
verse ply (ego _> eo). The present experiments were 
conducted only for the case ego >- e0. 

The delaminations observed in the experiments 
(Fig. 14) are not edge delaminations as encountered 
by Wang et  al. [5] but delaminations along the trans- 
verse cracks. This observation verifies the interracial 
behaviour assumptions used in this model. 

Figure 14 (Top view) Cracking distribution close to saturation for 
(a) n = 2 and (b) n = 4 (X-ray picture). 

TABLE I Number of cracks at saturation 

No. of layers Calculation Experiments 

2 229 240 
4 122 130 
8 65 65 

TABLE II Strain at saturation (%) 

No. of layers Calculation Experiments 

2 1.48 1.5 
4 1.26 1.25 
8 1.06 1.25 

5. Conclusion 
The model presented in this paper correlates well with 
experiments, especially for the volume effect on crack 
spacing and number as well as for the description of 
crack growth. However, its validity has to be checked 
for very thin transverse layers. 

The choice of a probability distribution of failures 
can be made in other ways, but a Weibull function is 
probably the most convenient. Finally, the interracial 
sliding hypothesis seems a good model of the com- 
plexity of the interracial behaviour but is not an ex- 
planation in itself. The physical interpretation that we 
have presented should be verified by a microscopic 
study of the interface around the crack tip. 

Appendix 
Let us show a comparison between shear stress distri- 
bution assumptions r~(z), in shear lag analysis, modi- 
fied shear lag analysis, and unbonded analysis. From 

TABLE III Strain (%) at the onset of cracking 

No. of layers Calculation Experiments Experimental average 

2 0.84 0.83, 1.00, 1.01 0.95 
4 0.78 0.61, 0.75, 0.79, 0.80, 0.97 0.82 
8 0.71 0.75, 0.80, 0.85, 0.94 0.84 
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Figure A1 Different shear stress distribution assumptions and their consequences on the free surface of the crack. 

the stress distribution xx~(z) and Equation 5, one can 
deduce the equation of the free surface of the crack: 

u(x, z) = S (zx,(z)/G)dz + u(x, 0) (hl) 

The results for the three cases are shown in Fig. A1. 
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